Package: PearsonICA 1.2-5

PearsonICA: Independent Component Analysis using Score Functions from the Pearson System

The Pearson-ICA algorithm is a mutual information-based method for blind separation of statistically independent source signals. It has been shown that the minimization of mutual information leads to iterative use of score functions, i.e. derivatives of log densities. The Pearson system allows adaptive modeling of score functions. The flexibility of the Pearson system makes it possible to model a wide range of source distributions including asymmetric distributions. The algorithm is designed especially for problems with asymmetric sources but it works for symmetric sources as well.

Authors:Juha Karvanen

PearsonICA_1.2-5.tar.gz
PearsonICA_1.2-5.zip(r-4.5)PearsonICA_1.2-5.zip(r-4.4)PearsonICA_1.2-5.zip(r-4.3)
PearsonICA_1.2-5.tgz(r-4.5-any)PearsonICA_1.2-5.tgz(r-4.4-any)PearsonICA_1.2-5.tgz(r-4.3-any)
PearsonICA_1.2-5.tar.gz(r-4.5-noble)PearsonICA_1.2-5.tar.gz(r-4.4-noble)
PearsonICA_1.2-5.tgz(r-4.4-emscripten)PearsonICA_1.2-5.tgz(r-4.3-emscripten)
PearsonICA.pdf |PearsonICA.html
PearsonICA/json (API)

# Install 'PearsonICA' in R:
install.packages('PearsonICA', repos = c('https://juhakarvanen.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 2 scripts 220 downloads 1 mentions 2 exports 0 dependencies

Last updated 3 years agofrom:40c0b2cfab. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 31 2025
R-4.5-winOKMar 31 2025
R-4.5-macOKMar 31 2025
R-4.5-linuxOKMar 31 2025
R-4.4-winOKMar 31 2025
R-4.4-macOKMar 31 2025
R-4.4-linuxOKMar 31 2025
R-4.3-winOKMar 31 2025
R-4.3-macOKMar 31 2025

Exports:PearsonICAPearsonICAdemo

Dependencies: