Package: R6causal 0.8.3

R6causal: R6 Class for Structural Causal Models

The implemented R6 class 'SCM' aims to simplify working with structural causal models. The missing data mechanism can be defined as a part of the structural model. The class contains methods for 1) defining a structural causal model via functions, text or conditional probability tables, 2) printing basic information on the model, 3) plotting the graph for the model using packages 'igraph' or 'qgraph', 4) simulating data from the model, 5) applying an intervention, 6) checking the identifiability of a query using the R packages 'causaleffect' and 'dosearch', 7) defining the missing data mechanism, 8) simulating incomplete data from the model according to the specified missing data mechanism and 9) checking the identifiability in a missing data problem using the R package 'dosearch'. In addition, there are functions for running experiments and doing counterfactual inference using simulation.

Authors:Juha Karvanen [aut, cre]

R6causal_0.8.3.tar.gz
R6causal_0.8.3.zip(r-4.5)R6causal_0.8.3.zip(r-4.4)R6causal_0.8.3.zip(r-4.3)
R6causal_0.8.3.tgz(r-4.4-any)R6causal_0.8.3.tgz(r-4.3-any)
R6causal_0.8.3.tar.gz(r-4.5-noble)R6causal_0.8.3.tar.gz(r-4.4-noble)
R6causal_0.8.3.tgz(r-4.4-emscripten)R6causal_0.8.3.tgz(r-4.3-emscripten)
R6causal.pdf |R6causal.html
R6causal/json (API)
NEWS

# Install 'R6causal' in R:
install.packages('R6causal', repos = c('https://juhakarvanen.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.18 score 1 stars 3 scripts 309 downloads 14 exports 18 dependencies

Last updated 8 months agofrom:dd349b53c0. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-winWARNINGNov 10 2024
R-4.5-linuxWARNINGNov 10 2024
R-4.4-winWARNINGNov 10 2024
R-4.4-macWARNINGNov 10 2024
R-4.3-winWARNINGNov 10 2024
R-4.3-macWARNINGNov 10 2024

Exports:analytic_linear_gaussiananalytic_linear_gaussian_conditiningbackdoorbackdoor_mdcounterfactualcreditfairnessfrontdoorgenerate_condprobLinearGaussianSCMParallelWorldrun_experimentSCMtrapdoor

Dependencies:causaleffectcfidclicpp11data.tabledosearchglueigraphlatticelifecyclemagrittrMASSMatrixpkgconfigR6Rcpprlangvctrs

Using R6causal

Rendered fromusing_R6causal.Rmdusingknitr::rmarkdownon Nov 10 2024.

Last update: 2024-03-15
Started: 2021-08-06